Как найти единичный вектор нормали
Перейти к содержимому

Как найти единичный вектор нормали

  • автор:

5.2.3. Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов.

Но для решения задач нам будет хватать и одного: если плоскость задана общим уравнением в прямоугольной (!) системе координат, то вектор является нормальным вектором данной плоскости.

Просто до безобразия! – всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости. И чтобы хоть как-то усложнить практику рассмотрим тоже простую, но очень важную задачу, которая часто встречается, причём, не только в геометрии:

Задача 134

Найти единичный нормальный вектор плоскости .

Решение: принципиально ситуация выглядит так:

Сначала из уравнения плоскости «снимем» вектор нормали: .

И эту задачку мы уже решали: для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Вычислим длину вектора нормали:

Контроль:, ОК

Ответ:

Вспоминаем, что координаты этого вектора – есть в точности направляющие косинусы вектора : .

И, как говорится, обещанного три страницы ждут 🙂 – вернёмся к Задаче 130, чтобы выполнить её проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке и двум векторам , и в результате решения мы получили уравнение .

Проверяем:

Во-первых, подставим координаты точки в полученное уравнение:

– получено верное равенство, значит, точка лежит в данной плоскости.

На втором шаге из уравнения плоскости «снимаем» вектор нормали: . Поскольку векторы параллельны плоскости, а вектор ей перпендикулярен, то должны иметь место следующие факты: . Ортогональность векторов элементарно проверяется с помощью скалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор параллелен плоскости в том и только том случае, когда .

Итак, с «выуживанием» нормального вектора разобрались, теперь ответим на противоположный вопрос:

Нормальный вектор плоскости, координаты нормального вектора плоскости

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Нормальный вектор плоскости – определение, примеры, иллюстрации

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = ( A , B , C ) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Найти координаты нормального вектора, принадлежащего плоскости 2 x — 3 y + 7 z — 11 = 0 .

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = ( 2 , — 3 , 7 ) — это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , — 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = ( 2 , — 3 , 7 ) .

Определить координаты направляющих векторов заданной плоскости x + 2 z — 7 = 0 .

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z — 7 = 0 к виду 1 · x + 0 · y + 2 z — 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны ( 1 , 0 , 2 ) . Тогда множество векторов будет иметь такую форму записи ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

Ответ: ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах, кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости. Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Плоскость в пространстве

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения: плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве. Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа:

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло — масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Расположение плоскости в прямоугольной системе координат

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: плоскость проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Как грамотно построить перечисленные виды плоскостей на клетчатой бумаге – смотрите в справочных материалах о пространственных поверхностях.

Линейные неравенства в пространстве

Для лучшего понимания информации желательно хорошо изучить линейные неравенства на плоскости, поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства. Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Как и для линейных неравенств плоскости, справедлив аналогичный принцип: если одна точка полупространства удовлетворяет неравенству, то и ВСЕ точки данного полупространства удовлетворяют данному неравенству.

Читайте примеры и посматривайте на чертёж:

1) . Как понимать данное неравенство? «Икс» и «зет» могут быть любыми, а вот «игрек» всегда больше либо равно нулю. Данное неравенство определяет правое полупространство; так как оно нестрогое, то координатная плоскость входит в решение.

2) – «игрек» и «зет» могут быть любыми, а вот «икс» строго меньше нуля. Неравенство задаёт дальнее от нас полупространство, и ввиду его строгости, координатная плоскость не входит в решение.

3) Сначала мысленно начертим плоскость – данная плоскость параллельна «родной» координатной плоскости и расположена на высоте (на 2 единицы выше плоскости ). При любых «икс» и «игрек» – «зет» меньше либо равно двум. Поэтому неравенство определяет нижнее полупространство + саму плоскость .

4) Дана плоскость . Я специально подобрал плоскость, которая «высекает» треугольник в первом октанте (такой, как на чертеже). Требуется строгим неравенством задать полупространство, которое содержит начало координат.

Составим вспомогательный многочлен и вычислим его значение в начале координат: , таким образом, искомое неравенство: .

Проведённый обзор полезен не только в аналитической геометрии, но и для решения ряда задач математического анализа.

Как составить уравнение плоскости?

Конструировать уравнение плоскости будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность. Математика – царица наук, не стерва, но строгА. А уж насколько доступна, во многом зависит от вашего к ней отношения =)

Казалось бы, плоскость можно определить с помощью двух неколлинеарных векторов. Но векторы свободны и бродят по всему пространству, поэтому ещё нужна фиксированная точка.

Как составить уравнение плоскости по точке и двум неколлинеарным векторам?

Рассмотрим точку и два неколлинеарных вектора . Уравнение плоскости, которая проходит через точку параллельно векторам , выражается формулой:

! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.

Как составить уравнение плоскости по двум векторам и точке?

Принципиально ситуация выглядит так:

Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (векторы будут свободно «вертеться» вокруг точки и зададут бесконечно много плоскостей).

Составить уравнение плоскости по точке и векторам .

Решение: Составим уравнение плоскости по точке и двум неколлинеарным векторам:

Определитель удобнее всего раскрыть по первому столбцу:

Раскрываем определители второго порядка:

На первом месте у нас находится знак «минус». Хорошим тоном считается убрать наглеца, в этих целях меняем знак у каждого слагаемого. Проводим дальнейшие упрощения и получаем уравнение плоскости:

Сократить здесь ничего нельзя, поэтому:

Ответ:

…числа, конечно, страшноваты получились для первого примера =) …но переделывать, пожалуй, не буду, на практике большие числа – вещь распространённая.

Как проверить задание? Для проверки пока не хватает информации, но я обязательно выполню её чуть позже.

Составить уравнение плоскости по точке и двум неколлинеарным векторам .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Иногда может потребоваться решить обратную задачу – по известному уравнению плоскости найти параллельные ей векторы. Кстати, сколько параллельных векторов существует у плоскости? Бесконечно много. Однако нельзя объять необъятное, поэтому «вытащим» из уравнения плоскости три таких вектора:

Пусть плоскость задана общим уравнением . Тогда векторы будут параллельны данной плоскости (а, значит, компланарны), и любые два из них – линейно независимы. Так, в Примере № 1 мы составили уравнение плоскости . Построенной плоскости будут параллельны следующие векторы: . Если честно, не припомню, чтобы приходилось этим пользоваться, тем не менее, справка не лишняя.

Итак, «конструкция» из двух неколлинеарных векторов и точки однозначно определяет плоскость. Но существует более очевидный способ, о котором упоминалось выше, и он громким стуком в дверь уже давно просится на урок. Три точки. Дёшево и сердито.

Как составить уравнение плоскости по трём точкам?

Любые ли три точки пространства задают плоскость? Нет. Во-первых, точки должны быть различными. А во-вторых, они не должны лежать на одной прямой (сразу все три).

Уравнение плоскости, проходящей через три различные точки , которые не лежат на одной прямой, можно составить по формуле:

Как составить уравнение плоскости по трём точкам?

На самом деле это разновидность предыдущего способа, смотрим на картинку:

Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:

То есть, наша формула фактически совпадает с формулой предыдущего параграфа. Многие уже заметили явную аналогию с материалами статьи Уравнение прямой на плоскости. Закономерности будут сохраняться и дальше!

Чтобы не умереть от скуки, предлагаю раскрутить примеры-шарады:

Составить уравнение плоскости по точкам .

Решение: составим уравнение плоскости по трём точкам. Используем формулу:

Вот теперь и аналитически видно, что всё дело свелось к координатам двух векторов. Раскрываем определитель по первому столбцу, находим уравнение плоскости:

Больше ничего упростить нельзя, записываем:

Ответ:

Проверка напрашивается сама собой – в полученное уравнение плоскости нужно подставить координаты каждой точки. Если хотя бы одна из трёх точек «не подойдёт», ищите ошибку.

Для «мёртвого» зачёта всегда выполняйте проверку мысленно или на черновике.

Составить уравнение плоскости, проходящей через точки и начало координат.

Это пример для самостоятельного решения. Ещё раз присмотримся к формуле . В каждом столбце определителя встречаются координаты точки , и это можно с выгодой использовать. В предложенной задаче даны три точки: , начало координат. В качестве точки можно выбрать любую из трёх точек. Подумайте, как рациональнее оформить решение! Да, и постарайтесь, не пропускать это задание, в самом конце решения увидите важный технический нюанс 😉

Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов. Но для решения задач нам будет хватать и одного.

Если плоскость задана общим уравнением , то вектор является вектором нормали данной плоскости. Просто до безобразия. Всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости.

Обещанного три экрана ждут, вернёмся к Примеру № 1 и выполним его проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке и двум векторам . В результате решения мы получили уравнение . Проверяем:

Во-первых, подставим координаты точки в полученное уравнение:

Получено верное равенство, значит, точка действительно лежит в данной плоскости.

Во-вторых, из уравнения плоскости снимаем вектор нормали: . Поскольку векторы параллельны плоскости, а вектор перпендикулярен плоскости, то должны иметь место следующие факты: . Перпендикулярность векторов легко проверить с помощью скалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор параллелен плоскости в том и только том случае, когда .

Решим важную задачу, которая имеет отношение и к уроку Скалярное произведение векторов:

Найти единичный нормальный вектор плоскости .

Единичный нормальный вектор плоскости

Решение: Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Ответ:

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока Скалярное произведение векторов, наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор, и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Как составить уравнение плоскости по точке и вектору нормали?

Выглядит значительно привлекательнее, чем предыдущие мытарства. В некоторых задачах аналитической геометрии уравнение плоскости можно составить несколькими способами, и решение через точку и нормальный вектор – самое оптимальное.

Составить уравнение плоскости по точке и вектору нормали .

Решение: Используем формулу:

Ответ:

Проверка выполняется очень легко:

1) Из полученного уравнения снимаем вектор нормали: – всё хорошо, полученный вектор совпал с вектором из условия (в ряде случаев может получиться коллинеарный вектор).

2) Подставим координаты точки в уравнение плоскости:

Верное равенство, значит, точка принадлежит данной плоскости.

Вывод: уравнение плоскости найдено правильно.

Пример настолько прозрачен, что хочется немного завуалировать условие:

Найти уравнение плоскости, проходящей через точку перпендикулярно оси .

Это пример для самостоятельного решения. Просто, но со вкусом.

Перейдём к более содержательным примерам. Типовая задача:

Как построить плоскость, параллельную данной?

Построить плоскость, проходящую через точку параллельно плоскости .

Решение: Обозначим известную плоскость через . По условию требуется найти плоскость , которая параллельна плоскости и проходит через точку .

Как построить плоскость параллельную данной?

Выполним схематический чертёж, который поможет быстрее разобраться в условии и понять алгоритм решения:

У параллельных плоскостей один и тот же вектор нормали. Добавить нечего =) Осталось оформить мат в два хода:

1) Из уравнения найдём вектор нормали плоскости: .

2) Уравнение плоскости составим по точке и вектору нормали :

Ответ:

Как выполнить проверку, я уже рассказал.

Продолжаем раскидывать стог сена пространственной геометрии:

Как найти расстояние от точки до плоскости?

Расстояние от точки до плоскости

Расстояние от точки до плоскости – это длина перпендикуляра, опущенного из точки к данной плоскости:

Формула очень похожа на формулу «плоской» геометрии расстояния от точки до прямой (см. Пример № 8 урока Простейшие задачи с прямой на плоскости).

Расстояние от точки до плоскости выражается формулой

При желании или надобности можно найти и точку , но для этого нужно разобраться с уравнениями прямой в пространстве и посетить урок Основные задачи на прямую и плоскость.

Найти расстояние от точки до плоскости

Решение: анализировать тут нечего, главное, не допустить ошибку в вычислениях:

Ответ:

Такое даже для самостоятельного решения неловко предлагать.

Заключительный раздел урока будет посвящен взаимному расположению плоскостей. Мы уже немного поговорили о параллельных плоскостях, и сейчас продолжим тему:

Взаимное расположение плоскостей

Для практики наиболее важна информация о взаимном расположении двух плоскостей, но и о трёх плоскостях также будет краткая справка.

Рассмотрим две плоскости пространства, заданные общими уравнениями:

2) быть параллельными: ;

3) пересекаться по некоторой прямой «эль»: .

Всё очень и очень похоже на взаимное расположение прямых на плоскости (урок Простейшие задачи с прямой на плоскости).

Совпадающие плоскости

Две плоскости совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим плоскости и составим систему:

Из каждого уравнения системы следует, что . Таким образом, система совместна и плоскости совпадают.

Параллельные плоскости

Две плоскости параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

На практике очень часто первые три коэффициента банально совпадают (). Посмотрим, например, на уравнения параллельных плоскостей из Примера № 8:

Комментарии, думаю, излишни, всё прекрасно видно. Но на всякий случай выполню формальную проверку, вдруг кому потребуется. Составим систему:

Из первых трёх уравнений следует, что , а из четвёртого уравнения следует, что , значит, система несовместна. Но коэффициенты при переменных пропорциональны, следовательно, плоскости параллельны.

Задача о нахождении параллельной плоскости уже была, поэтому решим что-нибудь новое:

Как найти расстояние между плоскостями?

Расстояние между двумя параллельными плоскостями выражается формулой:

Расстояние между плоскостями

Координаты точек нам неизвестны, да их и не нужно знать, поскольку перпендикуляр между плоскостями можно протянуть в любом месте.

Найдём расстояние между параллельными плоскостями Примера № 8:

Найти расстояние между параллельными плоскостями .

Решение: Используем формулу:

Ответ:

У многих наверняка возник вопрос: вот у этих плоскостей – первые три коэффициенты одинаковы, но это же не всегда так! Да, не всегда.

Найти расстояние между параллельными плоскостями

Проверим пропорциональность коэффициентов: , но , значит, плоскости действительно параллельны. Первые три коэффициента пропорциональны, но не совпадают. Однако формула-то предусмотрена для совпадающих коэффициентов!

Есть два пути решения:

1) Найдём какую-нибудь точку, принадлежащую любой из плоскостей. Например, рассмотрим плоскость . Чтобы найти точку, проще всего обнулить две координаты. Обнулим «икс» и «зет», тогда: .

Таким образом, точка принадлежит данной плоскости. Теперь можно использовать формулу расстояния от точки до плоскости , рассмотренную в предыдущем разделе.

2) Второй способ связан с небольшим трюком, который нужно применить, чтобы таки использовать формулу ! Это пример для самостоятельного решения.

Пересекающиеся плоскости

Пересекающиеся плоскости

Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :

Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Сразу отмечу важный факт: Если плоскости пересекаются, то система линейных уравнений задаёт прямую в пространстве. Но о ней позже.

В качестве примера рассмотрим плоскости . Составим систему для соответствующих коэффициентов:

Из первых двух уравнений следует, что , но из третьего уравнения следует, что , значит, система несовместна, и плоскости пересекаются.

Проверку можно выполнить «по пижонски» одной строкой:

Параллельные плоскости мы уже разобрали, теперь поговорим о перпендикулярных плоскостях. Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, а для того, чтобы зафиксировать конкретную перпендикулярную плоскость, нужно задать две точки:

Дана плоскость . Построить плоскость , перпендикулярную данной и проходящую через точки .

Решение: Начинаем анализировать условие. Что мы знаем о плоскости ? Известны две точки. Можно найти вектор , параллельный данной плоскости. Но этого мало, нужен ещё один. Так как плоскости должны быть перпендикулярны, то вторым вектором следует взять нормальный вектор плоскости .

Как построить плоскость перпендикулярную данной?

Проводить подобные рассуждения здОрово помогает схематический чертёж:

Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .

Кстати, теперь чётко видно, почему одна точка не определит перпендикулярную плоскость – вокруг единственной точки будет «вращаться» бесконечно много перпендикулярных плоскостей. Так же нас не устроит и единственный вектор (без всяких точек). Вектор является свободным и «наштампует» нам бесконечно много перпендикулярных плоскостей (которые, к слову, будут параллельны между собой). В этой связи минимальную жёсткую конструкцию обеспечивают две точки.

Задача разобрана, решаем:

1) Найдём вектор .

2) Из уравнения снимем вектор нормали: .

3) Уравнение плоскости составим по точке (можно было взять и ) и двум неколлинеарным векторам :

Ответ:

Проверка состоит из двух этапов:

1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения снимаем вектор нормали и рассчитываем скалярное произведение векторов:

2) В уравнение плоскости подставляем координаты точек . Обе точки должны «подойти».

И первый, и второй пункт можно выполнить устно.

Перейдём к заключительной задаче урока:

Как найти угол между плоскостями?

Две пересекающиеся плоскости образуют четыре двухгранных угла и любой из этих углов называют углом между плоскостями.

Угол между плоскостями

Обозначим угол между плоскостями через :

Наклон плоскости однозначно определяется её вектором нормали, поэтому угол между плоскостями можно найти через угол между нормальными векторами данных плоскостей. А угол между векторами рассчитывается с помощью обыденной формулы, рассмотренной на уроке Скалярное произведение векторов:

Распишем формулу в коэффициентах:

Обратите внимание, что формула может дать и тупой угол, например, 150 градусов. Такой ответ не будет страшной ошибкой, но за угол между плоскостями, как правило, принимают острый угол, поэтому концовку задания лучше дополнить расчётом «традиционного» угла: 180 – 150 =30 градусов.

Найти угол между плоскостями

Это пример для самостоятельного решения. Решение и ответ в конце урока.

Что-то не хочется мне вас сегодня отпускать… наверное, хорошо себя вели и активно работали на уроке =) Придётся рассказать что-нибудь ещё.

Взаимное расположение трёх плоскостей

Три плоскости могут располагаться в пространстве 8 способами, если интересуют все случаи, пожалуйста, посмотрите в книге Атанасяна-Базылева или в Интернете, видел вроде в Википедии, точно уже не помню.

Самый известный случай взаимного расположения трёх плоскостей – плоскости пересекаются в одной точке. Живой пример находится совсем недалеко от вас. Посмотрите вверх – в угол комнаты, где пересекаются две стены и потолок. Пессимисты могут посмотреть вниз.

Аналитически данному случаю соответствует система линейных уравнений , которая имеет единственное решение.

Ничего не напоминает? Вот, оказывается, где прячется метод Крамера… – в углу вашей комнаты!

На следующем уроке мы изучим Прямые в пространстве.

Спасибо за работу, домашнего задания не будет!

Решения и ответы:

Пример 2: Решение: составим уравнение плоскости по точке и двум неколлинеарным векторам:

Ответ:

Пример 4: Решение: составим уравнение плоскости по трём точкам :

Ответ:

Пример 7: Решение: Так как плоскость перпендикулярна оси , то вектор является вектором нормали для данной плоскости. Уравнение плоскости составим по точке и вектору нормали :

Ответ:

Пример 11: Решение: Разделим все коэффициенты второго уравнения на два:

Используем формулу

Ответ:

Пример 13: Решение: Обозначим . Используем формулу:

За угол между плоскостями примем острый угол:
Ответ:

Научный форум dxdy

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву , правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.

Вектор нормали

Найти вектор нормали $\vec<n>$» /> к поверхности <img decoding=в точке $M (1,1,-2)$, образующий острый угол с положительным направлением оси $Oz$.

Имеем: $F(x,y,z) = x^2-y^2+z^2-4$, градиент $F$в точке $M$будет $(2,-2,-4)$.

Примем $\vec= (0,0,1)$

Нахожу скалярное произведение: $\vec<gradF>(M) \cdot \vec = -4 < 0 \Rightarrow$» /> — угол тупой, то есть острый угол будет, если выбрать нормальный вектор <img decoding=Как включить ноутбук через биос

  • Как снять заднюю крышку на самсунг а71
  • Как узнать id группы стим
  • Стартер генератор что это такое
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *